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ABSTRACT

In a circular accelerator or collider, the excitation of coherent
longitudinal oscillations (dipole and quadrupole) by RF noise, magnetic
fluctuations and the like may cause indesirable effects, for instance
emittance blow-up or even beam losses. The RF system architecture
can be designed to damp these oscillations using feedback techniques.
These will be presented in this paper, both for the low intensity case and
when cavity beam loading becomes important.

1. INTRODUCTION

Conceptually the radiofrequency system of a circular accelerator or collider is, at first
sight, very simple. The accelerating cavity which acts on the beam is driven by an RF power
amplifier. The amplitude of the accelerating voltage is adjusted with a modulator (assumed
linear), and its frequency (which must be programmed according to the desired radial position,
for a given bending field) is controlled with a frequency generator (Fig.1). Despite large
variations in the technical solutions adopted (different frequency ranges, different RF powers
and voltages) this basic scheme applies to most ring type machines.

However, in many cases such a simple arrangement is inadequate, because it is
sensitive to errors, the most common being for instance:

- fluctuations of the magnetic field

- phase errors at injection of a bunched beam
- RF noise in the frequency generator

- ripple in the RF power amplifiers.

The effects of these is to excite coherent longitudinal oscillations of the beam (dipole,
quadrupole, etc) which ultimately may lead to emittance blow up and even beam losses. In
electron machines, where natural damping is present, those effects may be neglected if they are
weak enough. For hadron machines, on the contrary, there is no such damping; consequently
the RF system must be designed to damp coherent longitudinal oscillations (dipole and
quadrupole) in order to avoid uncontrolled emittance blow-up. The purpose of this lecture is to
review the means to achieve this objective, first for low intensity beams, and thereafter, when
cavity beam loading becomes important.

2. DIPOLE AND QUADRUPOLE MODE DAMPING AT LOW INTENSITY
2.1 Basic principle

To damp the dipole mode of oscillation we must introduce a friction term in the
linearized synchrotron equation (for the center of gravity of the bunch):

d’ dé 2
— + o0— + 06=0 1
dt® dt 9 D

¢ : phase deviation with respect to the synchronous particle,
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,/2rx: synchrotron frequency.

The damping term a% = jo ¢ which is in quadrature with ¢ can be obtained if the
original scheme of Fig. 1 is somewhat modified as in Fig. 2. The RF component of the beam
is obtained with a pick-up electrode followed by a filter centered at the RF frequency. By
measuring the relative RF phase between this beam signal and that of the frequency generator,
one obtains the phase deviation ¢ (equation 1). In reality the measured phase deviation
contains in addition a steady, or slowly varying offset due, for instance, to the delays in the
measuring equipment or to the varying synchronous phase. Damping is achieved if the phase
deviation signal, ¢, is shifted by 90° at the synchrotron frequency (Fig. 2). The shifted-in-
phase signal modifies the original RF via a controllable phase shifter inserted in the cavity drive
chain. Such a system follows equation (1), in which ¢ is proportional to the loop gain.

This is not the only conceivable scheme to damp coherent phase (dipole) oscillations.
Instead of measuring the phase error, one can look at the energy deviation, in which case no
90° phase shift is needed in the feedback path. The energy deviation being proportional to
radial displacement, can be measured with a radial pick-up electrode located in a region of large
dispersion. In practice, there is a limited resolution in the radial measurement (betatron
oscillations, noise, etc) which leads to rather small loop gains and slow damping.

2.2 Damping rate

The system of Fig. 2 can be conveniently analyzed using the concept of beam transfer
function B(s), defined as the ratio of beam phase pp to cavity phase p, (measured with respect
to the RF reference). For small oscillations (linearized synchrotron equation):

0}

s2+@

S

B(s)=

2 (2)

where s is the complex variable. Asexpected B(s) has poles s=1=jm, for the real frequency
@, (no damping).

With the transfer function of the electronic feedback return path, G(s) (from beam
phase measurement to cavity phase), one obtains the characteristic equation of the system:

G(s)-B(s)-1=0 . ?3)

In the simple (ideal) case G(s5) = G, -aj— (pure differentiator) one obtains the following
I4

equation:

wZ

s =5G,—~+ o’ =0 (4)
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for which the two roots:
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2
have a damping term G, 2‘2‘; provided G, is negative.
4

Critical damping is achieved for:

GO, _ 5 (6)
w

P

ImG(s=jo,)=

2.3 A real differentiator in the feedback path

The ideal differentiator G (s) = G5/ @, is not realizable in practice, since it has
infinite gain at infinite frequency. The gain must roll off at some frequency (1 /7)) >f. .
Moreover, the loop gain at the revolution frequency f,,, must be small, in order to avoid the
excitation of coupled bunch modes. Therefore a second roll off point at a frequency
(1/%) <f,., must be provided (Fig. 3). This second roll off may indeed be given naturally
by the cavity bandwidth itself.

The overall transfer function G(s) for a realistic differentiator can be written as:

G(s) = G, 1 1 7
w, l+s7, 1+s7,

which leads to the characteristic equation:

G
1,080+ (1, + 1) + (1+ 011, )8 + (11 +1,-—2 o)+ =0 . (8)
®
P

The system is stable if all roots of this 4th-degree polynominal have negative real parts. This
can be checked without actually solving the characteristic equation by using the Routh-Hurwitz
[1] criterion which for a 4th-order equation:

as*+as’+as’+as+a,=0
can be written:

aa
a,>0 , a>0 , aq--——>0

and:
2 2
aa,a,—aa,—aa,>0

Applied to equation (8), the Routh's inegalities lead to the following conditions:
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T,—— < < 0. 9)

It can be shown that even for the highest possible gain the quantity (Im G(s= jco,)) is smaller
than unity, which means that critical damping cannot be reached in practice.

In conclusion damping with a differentiator circuit is limited in gain; this is particularly
true for machines with high Q,. There is another reason for limiting the gain: at the frequency
2f. , the loop gain should not be large, as the phase detector is never completely insensitive to
amplitude fluctuations (quadrupole mode of oscillation of the beam). If the gain is too large the
loop may excite the unwanted quadrupole mode.

A variant of the differentiator scheme has been proposed [2][3] in which the
differentiator is replaced by a 90° phase shifter at f; , based on analog or digital delays. A
similar study has been made [3], leading also to the result that the loop gain is limited.

The differentiator scheme can easily be implemented (the DC or slowly varying offsets
are automatically rejected); it is well adapted in cases where relatively slow damping is
sufficient. In particular it is generally adopted for individual bunch damping in addition to a
phase loop, as described in the following section, acting on all bunches at the same time.

A typical result [2] is given on Fig. 4, showing the damping of dipole oscillations at
injection in PETRA 1L

2.4 Feedback path with integrator

The required 90° phase shift at f, can also be obtained with an integrator in the
feedback path, with the transfer function:

G
G(s)=—2
(s) 1+sT

10)

The loop gain at multiples of the synchrotron frequency, as well as at f,, is smaller,
as compared to the differentiator case, because the loop gain already rolls off at f, .

Conversely, the loop gain is higher for frequencies below f, . This is generally an
advantage for several reasons:

- the sources of excitation are usually stronger at low frequencies; a higher loop
gain is more likely to reduce their effect on the beam.
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- the incoherent synchrotron frequency band extends from Jfs (for the
synchronous particle) downwards. A large gain below £, will prevent excitation
of parts of the beam, especially in the case of long bunches.

- as will be seen in section 3.2, the coherent synchrotron frequency decreases
when the beam intensity increases, making the feedback with integrator better
suited for high intensity beams.

The Routh inequalities for a 3rd-order polynominal :

a,>0 R a, >0 , al-—M>0 , a,>0
4,
applied to the characteristic equation:
15° +5" + 10ls+ 0l (1-G,) =0 (11)
lead to the stability criterion:
0<G,<1. (12)

The loop gain is also limited to keep the system stable, and therefore such a scheme is
not very interesting as it can only provide weak damping and does not reject the static offsets.

At the gain limit, G, = 1 one of the roots of the characteristic equation (11) becomes
s = 0: the system gets unstable at a very low frequency. A possible way to overcome the
Gy < 1 limitation would be to reduce the overall loop gain at very low frequencies. To achieve
this we can measure the beam-cavity phase error instead of the beam-reference phase error, as
depicted in Fig. 5. This is equivalent to replacing the beam transfer function B by B-1in the
characteristic equation.

With B—1=—s* /(s +®?) , the overall loop gain has a double zero at s = 0, as
anticipated. The characteristic equation can now be written as:

15’ +(1+ Gy)s* + twls + 02 =0 . (13)
Application of Routh's criterion:

G, 1w’

>0 5  1+G,>0
1+ G,

>0 ;5 @’>0
shows that there is no limitation on the loop gain: the system is unconditionally stable. For the
more realistic case of a double integrator:

G, 1
1+s7, 1+s7,

G(s)= (14)

in which the term 1/(1+ s7,) may account for the cavity bandwidth, the result is the same:
there is no gain limitation connected with the stability of the system.

Although this scheme with its unlimited gain has the capability of suppressing any
dipole motion, it may not be very practical. This is because the large DC gain will amplify
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considerably any phase detector offsets, thus requiring unpractically large dynamic range of the
phase shifter. A much better solution is to replace this phase shifter by a voltage controlled
oscillator (VCO), equivalent to a phase shifter with an infinite range and integrator transfer
function @,/s. (conversion frequency —> phase). The overall transfer function (10) can be
restored by having a loop amplifier AC-coupled (transfer function Gys /(1 +57)).

This scheme: beam-cavity phase detector, AC-coupled amplifier and VCO is of
common use in proton machines [4], provided the VCO stability and linearity are adequate to
control the average radial position of the beam. Slowly varying offsets or stable phase
variations are automatically rejected by the amplifier AC coupling. If the delays between cavity
and phase detector and between pick-up and phase detector are made equal, the slowly varying
phase offsets due to RF frequency variations are automatically eliminated.

Such a system has, however some limitations; for instance if transition has to be
crossed, it is easier to control the radial position of the beam directly rather than through the RF
frequency (dR/df becomes infinite at transition). In such a case a DC-coupled VCO
complemented with additional loops is a possible solution.

2.5 DC-coupled phase loop with radial correction

Assume for the moment that the VCO is driven by a DC-coupled loop amplifier, of
constant gain Gy,

The characteristic equation:

GOCOP s2
s wr+s

5

>—1=0 (15)
s =G0 5+ 0} =0

has two roots, one strongly damped, for |Goa)p|>> o, and G negative, and a second one,

weakly unstable in the vicinity of s = 0. As such, the system is therefore not stable (as
expected); a fact which can be also analyzed by looking at its closed-loop response, including

beam. If a perturbation Af, is introduced at the VCO input, the beam frequency deviation Af,,
can be calculated, giving the closed loop response:

Af,, B B ? ~ o?
- - - ~ _
A, 1-G,22(B-1) s+@’-G,0s 0o
S

(16)
for Gy large.

The closed loop response is that of an integrator (1/s). This is because the strong phase

loop imposes the beam-cavity phase to be proportional to the perturbation Af,, . For instance,
for a constant Af,, , the beam energy increases linearly with time (constant stable phase error),
and so does the frequency deviation Af,, . This is just the characteristic of an integrator.

To restore stability we can use an additional loop which measures the beam frequency

error (or the radial position of the beam) and corrects the VCO input signal (Fig. 6). In the
limit of Gylarge, the response of the overall system becomes simply:
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Af, 1
Af, _I_Goswp an
G,w?

where G; is the radial (or frequency loop) gain (Fig. 6). Thisis just the response of a single-
pole low-pass filter with a time response:

— Gﬂmp

T, =—-2F
G}

(18)

which, for a large phase loop gain G,w, and small radial loop gain G, can be made much
larger than the synchrotron period.

In other words, the perturbations to the overall system (magnetic fluctuations, noise,
etc) are filtered and look adiabatic to the beam, as the time constant 7, can be made very long

compared to the synchrotron period (even in the vicinity of ransition, where w, —0).

The DC-coupled phase loop and radial loop combination has been in use for decades on
proton accelerators and storage rings [5](6]. In addition to providin g a strong damping of the
coherent dipole mode (which can never be observed with such a system) it gives a convenient
way of controlling the radial beam position without precise frequency synthesizers and
magnetic field measurements.

If the beam frequency must be synchronized with an external reference, the radial loop
can be replaced by a so called "synchronization loop" (Fig. 7). The phase difference between
beam and reference is used to correct the input of the VCO. However such a system has two
integrators in cascade (frequency-to-phase conversion with the phase detector of the
synchronization loop, and phase loop itself) and is therefore sittin g at the limit of stability if G¢
is purely real (Fig. 8a). To overcome this problem, the classical solution is to introduce a
phase advance network in Gy as shown in Fig. 8b, which restores stability.

2.6 Quadrupole-mode damping

Similar methods can be applied to damp the coherent quadrupole mode. The detection
of quadrupole oscillations usually relies on the measurement of the peak line density of the
bunches. A wide band pick-up electrode followed by a peak detector is the most commonly
used technique (Fig. 9). The detector time constant must be long enough to reject
components at f,,, and higher.

The beam transfer function: amplitude cavity voltage A V/V -> quadrupole mode
amplitude A4/ £ (¢ = bunch length) is simply:

) (19)

the factor & depending on the bunch length. In particular, for very short bunches @ =1/4,

Damping of the quadrupole mode again requires 90° phase shift at 2f., as for the

dipole mode. The differentiator technique is always used, because it automatically rejects the
large DC offset of the peak detector (which depends on the bunch intensity and is therefore
difficult to compensate).
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The gain limitation of the differentiator scheme is generally unimportant, as the

quadrupole excitations are usually weak. If ¢, # 0, the loop amplifier can also act in the YCO
input, and not on the RF modulator [7][8].

3. HIGH INTENSITY CASE

Up to now, the influence of the beam current on the accelerating voltage has been
neglected. To study the case of high intensity beams, where this effect becomes important, we
start with the usual cavity model (Fig. 10), in which the cavity itself, as seen from the
accelerating gap, is represented by a lumped elements RLC circuit. The beam is a pure current
source I (assuming that the beam energy is much larger than the cavity voltage), and the
power generator a second current source I; . In this model the generator impedance,
transformed to the accelerating gap has been included in the shunt resistance R.

The vector diagram of Fig. 11, at the RF frequency represents the steady state situation
in the case of a single cavity (or if all cavities are in phase and identical). The cavity voltage V

results from the total current I—; = I—(;+I_;, flowing into the parallel RLC circuit impedance,
characterized by the on-tune current /,=V/R and the detuning angle

¢, (tan ¢, =20 Af /f;e, where Q is the cavity quality factor, including generator, Af the
cavity detuning with respect to the RF frequency fzr ).

The phase of the beam current I—:, with respect to Vis simply ¢,+xn/2 (below

transition case) where @5 is synchronous phase angle determined by independent machine
parameters (rate of rise of magnetic field and (or) synchrotron radiation). Our free parameter is

the generator phase angle ¢, (phase between I_G’ and V ) which can be adjusted via the

cavity tuning. The normal operating condition is ¢, ~0, which corresponds to a resistive load
to the power generator.

3.1 The Pedersen model {9][10]
In the low intensity case, we have only considered the transfer function from cavity

phase (voltage) to beam phase, including the cavity response itself (from I_G' and V ) in the
electronic transfer function. Analysis of the high intensity case is far more complicated, not

only because V is now influenced by 1_;, , but also because the cavity may be largely detuned
giving cross modulations from amplitude to phase and vice-versa.

In the following we shall follow the analysis of F. Pedersen [9]. The variables are the

phase and amplitude modulations of 1_:;, V and I_,:. They are related by the cavity transfer

functions G° and G® from generator and beam respectively and beam transfer function (B) as
shown on Fig. 12. For simplicity we now only consider the case of short bunches, so that the
amplitude of I, is constant, (/3 = 2/)¢) and the corresponding variable disappears. The
transfer function tan ¢ comes from the fact that B is the transfer function for phase

modulations around the stable phase ¢p , which itself depends on the amplitude of V.
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Phase and amplitude modulations can be represented by their two rotating vectors at the
modulation frequency. The cavity transfer functions from modulation of 1—; to modulation of

V are therefore given by:

_ 12U+ jawe) | Z(s— jo)
G G“"”{ Z(jow) | Z(joon) }

. : (20)
1{Z(s+1(z),w) _ Z(s—jw”)}

G =G - ;
Z(JmRF) Z(mer)

pa ap

where G,,, G,, are the transfer functions from phase modulation to phase modulation, or
amplitude modulation to amplitude modulation, and G,,, G,, are the transfer functions from
phase modulation to amplitude modulation and vice versa. The cavity impedance Z (s) is given
by:

20Rs
Z2(s)=——— 21
(5) s’ +205+ @? D
where 0 =, /2Q is the half cavity bandwidth (in rad/s) and @, the cavity resonant
frequency. @, isrelated to the detuning angle by:
W, =0y+0tan ¢, . (22)
Combining equations (20) and (21) one finds:
o’(1+tan’¢g,)+ o5
w2 2 2 (23)
s’ +205+0°(1+1an’ ¢, )
otang, s 24)

G”=s2+20's+0'2(1+tan2¢,)

The final transfer functions from 1_,: and I_(; to V are obtained by projection of the modulations
of I_,; or 1—; on I—; according to:

l - o I . —- 5
G = G,,PI—G cos (IT,IG) + G, I_G sin (IT,IG) (25)
T T

and similar relations for GJ, , G, and G-, etc. Finally one obtains the complete transfer
functions:
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o*(1+1tan® ¢, + ¥(sin ¢, — tan ¢, cos ¢;)) + (1 + Y sin g, )s

Gy = >
¢ _—0Y(cosg, +tang,sing,)+ otan g, — Y cos g, )s
G, =
D
s _ Y(0?(tang, cos @, —sin¢,) — osin ¢,s)
G,=
D
26
. Y(Gz(tan¢, sing, +cos @)+ Ucosd),,s) (9
G* =
D
D=s*+20s+0*(1+1an’¢,) Y=1I,/1,
G. =G, Gy =-G3 .

3.2 System stability without loops

Even without electronic loops built around the RF system, stability is no longer
guaranteed at high intensity because of the reaction from the beam to the cavity voltage. If the

cavity is driven open loop, as in Fig. 1, there are no modulations on 70, neither phase nor
amplitude, and therefore Fig. 12 simplifies considerably, leading to the characteristic equation:

B(G,, +tan¢,G,)-1=0 @7
which can be written in polynominal form:

s*+205 +(a),2 +07(1+tan’ ¢,))s2 +2 0 05 + ow(1+tan’ ¢, - Y tan g, / cos¢,)=0 (28)

Routh's stability conditions:

and:
aa,a, - aja, — aja, >0
applied to (28) lead to the two inequalities:

Ysin2 ¢, <2

cOSs @, 29)

and
tang, >0 . 30
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These two inequalities are referred to as the Robinson stability limits [11]. The second
one (equation 30) is independent of intensity (low intensity limit), whereas the first puts a
threshold on the beam current (proportional to Y).

The low intensity limit has often been described in the literature on bunched beam
instabilities. The RF cavity is a narrow band resonator whose resistive part may be different

for the two synchrotron side bands at fir +f, and fzs - f,. Below transition, stability of the
n = 0 mode(all bunches in phase) is achieved if R(zr +f,) > R{fsr - f,.), which also

corresponds to a positive detuning, or ¢, > 0 (Fig. 13).

To interpret physically equation (29) (high intensity limit), let us consider the beam
induced voltage 17; =Z I_,; and the generator induced voltage 17:; =Z I—(; , whose sum
17;+ ‘7; is simply V. The corresponding vector diagram (Fig. 14) is the same as the current

diagram of Fig. 11 I,+ I, = I,, but shifted in phase by ,.

If the quantity tan (¢, - ¢,) is evaluated at the stability limit:
Y=2cos¢,/sin2¢, (31
using the relation:

tan ¢, —Y cos ¢,

tan ¢, = 32
o 1+7Y sin ¢, (52)
obtained from Fig.11, one easily finds:
tan (9, - 9,) = — (33)
tan ¢,

-

showing that the vectors 1;; and I are in opposition. The stability condition (29) can

therefore be interpreted as the limit where the beam sits on the crest of the generator induced
voltage. For the coherent dipole motion of the bunch, only this voltage can provide a restoring
force (the beam induced voltage simply follows the bunch motion and cannot contribute).
Therefore when the vector combination is such that the beam reaches the crest of the generator
driven voltage, longitudinal focussing (or stability) is lost for the dipole mode.

The stability limits (29) and (30) are shown on the diagram of Fig. 15, where the

dashed areas are forbidden. The curve tan ¢, =0 or Y =tan ¢, / cos ¢,, corresponding to a
resistive load to the power source is also shown on this diagram.

Combining (31), (32) and the following equation obtained from Fig. 11:

I;=1,(1+Ysing,)/cos ¢, (34)
one finds, at the threshold current:

I;=21,

for the optimum power transfer situation (¢, = 0). In other words, the power delivered to the
beam is just equal to V2 /2R at the current limit. In the case of a current source type generator
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(tetrode, for instance) this corresponds to the power lost in the cavity walls and the tube. If a
matched generator is used (klystron and circulator for instance) in conjunction with a lossless
cavity (superconducting), when all power is transferred to the beam (matched generator

1; =2 1), one is sitting just at the stability limit [12].

3.3 The case of long bunches

For long bunches, the amplitude of I, is no longer independent of the amplitude and

phase of V. In the simple case of a stationary bucket (¢; =0), the amplitude of the RF

component of I/, depends only upon the amplitude of the RF voltage through a transfer
function:

B =— s (35)

where & depends on the bunch length (@’ = 0 for short bunches, @’ 20). Note that &’ is

different from « (§2.6) as it is defined for the RF component of I_,: and not for the
quadrupole mode amplitude.

Conversely the amplitude modulation of Z, perturbs the amplitude and phase of 17, via
the cavity response. The relevant transfer functions:

2
G2 =G’ Yotang, (36)
D
Y(o’+os
G2 =-G’ = Gl - ) &1

are valid for ¢, =0 (Fig. 12, dashed lines). Without electronic loops, the system relations:

p;=Bp,=B (G:ppl, + G:;a,,)

38
a,=Ba, = B'(G:ap,, + G:;a,,) %)

lead to the characteristic equation:
(1-BG,)1-BG,) - BBG,G, =0. (39)

A detailed analysis of this case where there is coupling between the dipole and quadrupole
mode has been given in Ref. [13], the result being that the Robinson stability limit (29) may
be considerably different for long bunches.

3.4 Stability limits with phase loop

Consider again the phase loop of Fig. 6 which provides strong damping in the low
intensity case. The diagram of Fig. 12 must be completed by the phase loop path:
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. d - . .
measurement of the phase difference between 7, and V and correction via the phase of the

generator current /; (Fig. 16).

For simplicity assume ¢, =0, short bunches, and an idealized transfer function: C,=w,/s
for the VCO.

The characteristic equation can now be written:

(s + a)f)(s2 +205+ 0”(1+1an’ g, )) =w’o’Ytang, — COPS(O'Z(I +tan’ ¢, —Ytang, )+ O'S). (40)

Applying again Routh's criterion to this 4th-order equation gives the following sufficient
stability conditions for a large loop gain:

2
>( Y < 4]
£ sin2¢, “n
) 2
¢, <0 Y< (42)
|tan2¢,|

as plotted in Fig. 17. Comparing with Fig. 15, the effect of the phase loop is to remove the
low intensity Robinson limit (¢, > 0). In other words, the strong damping imposed by the
phase loop at low beam currents, overrides the small antidamping which would prevail at
¢, <0.

On the other hand, the high current limit is not affected by the phase loop, as shown by
equation (41). This can also be understood in the following way: the high current limit

corresponds to s = 0, for which the overall phase loop transfer function (co‘p /s)(s2 /(w? + 52))

vanishes. The phase loop becomes inefficient when the frequency of the dipole mode
approaches zero, i.e. when the high current Robinson limit is reached.

3.5 Complete RF system

In practice a complete RF system comprises in addition to the phase loop of Fig. 6, a
tuning loop to keep ¢, = O (static case) and an amplitude loop to regulate the amplitude of V.
These loops which are sketched in Fig. 18, can easily be added to the block diagram of
Fig. 12. Assuming simple integration type transfer functions for the loop amplifiers (tuning
loop Cr = wy /s, amplitude loop C, = w, /s), one obtains an 8th-order characteristic equation,
which can hardly be treated analytically.

The only simple analytical result known to the author is the following: with tuning and
phase loop only (no amplitude loop) Y is limited by the stability condition:

1

sin¢,

Y < (43)

Inthe case ¢, =0, ¢, =0, 0O large, and assuming B(s) = 0, Pedersen has derived
an analytical criterion [9]:
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0, O 0, 6 0, @
Y< 24+—2+—TL 4T —24 £ (44)
o, 0, 0, 0, 0

Numerical solution of the characteristic equation for various values of the parameters
leads to stability diagrams like those of Figs. 19, 20 and 21 [14]. When the individual loop
bandwidths ®,, @, are equal to G, the loops are strongly coupled and the stability margin is
very small, even at zero beam current (Fig. 19). Separating these frequencies as in Fig. 20
improves the stability margin at Iz =0, but Y is limited to about 2 for the matching condition
¢, = 0. The same result is found in Fig. 21 where ®,, @, are much smaller than o, giving
unconditional stability at /; = 0. There again Y is limited to ¥ ~ 2 for ¢, = 0.

All these results show that exceeding ¥ = 2 may lead to beam loading instabilities of the
RF system, depending on its operating conditions.

As a general rule the design condition Y < 1, equivalent to:
R I, <V (45)
provides a reasonable safety margin.
3.6 Cures for heavy beam loading cases

In the situation where the inequality (45) is not satisfied one can try to reduce the
parameters /, or R, as seen by the RF system.

In the so-called "feedforward technique”, the power amplifier is driven, not only by the
signals generated by the amplitude and phase loops, but in addition by an RF signal derived
from a beam monitor. The amplitude and phase of this signal is such that it generates in the
cavity a current approximately equal to - /;. From the system dynamics point of view, this is
equivalent to reducing the beam current by a large factor (beam loading compensation)
[15][16]. The result is a considerable increase of the stability threshold current. Notice that
the static power balance of the RF amplifier is not affected; simply the drive signal from the
VCO and modulator are now different.

Although this solution is conceptually very simple, it maybe in practice be difficult to
implement for various reasons:

- Non-linearities of the power amplifier limit the cancellation effect (at best a factor
10 can be achieved in practice), as well as phase and amplitude stability of the
various elements in the compensation chain.

- For a varying RF frequency, all these problems are even more difficult: tolerances
on gain and phase are very critical.

- To avoid coupled-bunch effects, the overall delay from beam monitor to cavity
should be small, or exactly equal to one turn.

A better, widely used solution, is to use RF feedback around the amplifier, as sketched
in Fig. 22. Its effect is equivalent to introducing a shunt resistance across the accelerating gap,
whose value is inversely proportional to the loop gain. In such a way R in equation (45) can
be reduced by a large factor, increasing in proportion the beam current threshold. For large
gains, it can be shown easily that the RF amplifier delivers to the cavity an additional current
approximately equal to - I3, as in the case of the "feedforward technique". However the
tolerances on phase and gain are far less critical, provided loop stability is maintained.
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The overall loop delay 7,, limits the maximum gain, and therefore the minimum
resistance R.,;, which can be achieved with RF feedback. For a reasonable stability margin
(45° at unity loop gain), R, can be evaluated easily in the case of a large loop gain.
Combining:

- 45° additional phase shift due to 7, ow 1,=m/4

- cavity impedance far from resonance Z= S0

one obtains [17]:

R
R .~.4§ T f, . (46)

The cavity half bandwith &f is increased in the same proportion:

A
R

min

of =

(47)

Q=

1
2

At the design limit R ; -/, =V (equation 45), one obtains the ratio of cavity half bandwidth to
revolution frequency:

L.
f;'ev

where 4 is the harmonic number. If this quantity is small compared to unity, the stability of
the RF system only involves modulations of the fundamental RF, as analyzed in the previous
sections. This is typically the case of small rings where A is small. For large rings, usually A

is larger (several hundreds to several thousands) and & f / /., can be much larger than unity.

There the cavity impedance becomes large at the revolution frequency sidebands, and coupled-
bunch modes can be strongly excited by the RF system. The parameter (R /Q )(1/ V) would
be more favourable if superconducting cavities could be employed.

g % h, (48)

B |-

Figures 23 to 25 show a few examples of RF feedback technique applied in various
cases: low power, varying frequency around 100 MHz (Fig. 23), high power in the megawatt
range (Fig. 24) and superconducting cavity with extremely high feedback gain (Fig. 295).
Many more examples are described in the literature [4, 18-22].

Although the equilibrium power conditions are not affected by either feedforward or RF
feedback techniques, this is not true during transients, at injection or at the revolution
frequency harmonics. In the case of large rings, with slow acceleration rate, this effect may
even be dominant and the RF power requirements be determined only by the correction of fast
beam loading transients.
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